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Abstract

The classic theory of Thomas and Windle has provided a powerful description of the processes involved in Case-II diffusion, in which a
sharply defined front of solvent-swollen gel advances into a glassy polymer. We show how some aspects of the Thomas–Windle model can
be introduced into a recent formulation by Rossi and coworkers to provide a phenomenological description of the slowing of the advancing
front. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of anomalous diffusion phenomena in poly-
meric materials has been of interest for decades. One parti-
cular instance of non-Fickian transport is Case II diffusion
[1], which is characterized by a sharp front moving into the
polymer at a constant velocity. It has been intensively inves-
tigated experimentally and theoretically, and various micro-
scopic and phenomenological models have been proposed
to explain the observed features of Case II diffusion in
glassy polymers. Of microscopic models, that of Thomas
and Windle (TW) [2,3] appears to be the most successful.
In this approach, the diffusion of solvent is accompanied by
a swelling of the polymer that is driven by the osmotic
pressure, and the front motion is controlled by the coupling
between this osmotic-pressure-driven swelling and the
nearly Fickian diffusion in the glassy region ahead of the
front. Detailed reviews of the TW model can be found in
Refs. [4–6]. The expression for the front velocity derived
from this model has been quantitatively verified experimen-
tally [7–9].

Of the many phenomenological models, that of Peterlin
[10] first considered Fickian diffusion into a glassy core
ahead of a sharp boundary that separates the swollen gel
from the glassy core and which moves at constant velocity.
Because it was assumed that the diffusion coefficient in the

swollen gel is infinite and that the front velocity is constant,
this model was not able to describe the slowing-down of the
front motion and the crossover from Case II to Case I beha-
vior that is observed in a number of systems [11,12]. Astar-
ita and Sarti (AS) [13] introduced a kinetic expression for
the velocity of the glassy-swollen interface and treated the
diffusion in the swollen gel as governed by Fick’s law. The
crossover from Case II to Case I behavior, as well as front
propagation at constant velocity in the early stage of the
diffusion, were predicted. However, this model did not
take into account the diffusion of a small amount of solvent
in the glassy core and thus treated the transition from the
glassy to the swollen state as totally instantaneous. The
neglect of the Fickian precursor ahead of the front does
not affect the prediction of the early linear kinetics and
the later crossover to Fickian behavior, but it does never-
theless leave the model at odds with the microscopic rate-
control mechanism as revealed in the TW model and veri-
fied in a number of experimental observations. Astarita and
Joshi (AJ) [14] extended the AS model to allow for some
diffusion in the glassy core while keeping the kinetic expres-
sion for the front velocity unchanged. This was an improve-
ment on the AS model, but still shed no light on the effect of
glassy-core diffusion on the front velocity.

More recently, Rossi and coworkers [15,16] have
provided some new insight with a phenomenological
model that also incorporates diffusion into the glassy core.
Two important time scales associated with the establish-
ment of a diffusing front and the crossover from Case II to
Case I behavior were predicted. In their approach, a
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plasticization-imposed constraint was used for the solvent
flux across the glassy-swollen interface. As a result, the
front velocity became independent of the solvent concentra-
tion immediately behind the advancing front. This approx-
imation is not consistent with the rate-control mechanism in
the TW model and is not entirely in accord with the experi-
mental observations [11,12]. Theoretically, lack of depen-
dence of the velocity on solvent concentration decouples the
diffusion in the two distinct regions separated by a discon-
tinuity of the solvent concentration. The Fickian precursor is
determined only by the characteristic concentrationf c that
distinguishes the glassy from the plasticized state, by the
diffusion coefficient Dg in the glassy core, and by the
constant front velocityv0, but not by any property of
the plasticized region.

The purpose of this paper is to present a phenomen-
ological model that takes into account the diffusion in
both the glassy core and the swollen gel and that
includes the rate-controlled motion of the front separat-
ing these two regions. In particular, the rate-control
mechanism of the TW model is used to construct an
expression for the front velocity. This expression leads
to a coupling between the diffusion in the two distinct
regions. It is then shown that such a coupling can be
treated in the adiabatic approximation, by which we
mean the separation of the problem into two time scales
and the treatment of the rapid motion in a quasistatic
framework. The adiabatic criterion is found to be
Ds=Dg q 1; which requires the diffusion coefficientDs

in the swollen state to be much larger than that in the
glassy one. With the aid of our model we reach the
following conclusions: (1) in the early stage, the bound-
ary separating the glassy core from the swollen gel
moves at a nearly constant velocity; (2) as the diffusion
proceeds, the discontinuity in solvent concentration
across the boundary decreases with time, as does the
front velocity; (3) although the front velocity decreases,
the shape of the Fickian tail ahead of the discontinuity
can be determined, and the effect on the front velocity
of a slowly varying Fickian precursor can be explicitly
obtained; and (4) the expression for the front velocity in
the adiabatic limit appears as a simple generalization of
the TW expression for a constant front velocity.

2. Model

It has been experimentally observed that a critical solvent
concentration must be reached before a Case II diffusion
front is formed [17]. Here we first introducef c, the char-
acteristic solvent concentration distinguishing the glassy
from the swollen state, as in Refs. [13–16]. Thisf c is the
threshold concentration for swelling. So, in the swollen
region, the solvent concentrationf is abovef c, while in
the glassy region,f , fc: We then assume that the diffu-
sion equations in the glassy core and the swollen gel are

respectively given by

2f

2t
� 2

2x
Dg�f� 2f2x

� �
; �1a�

and

2f

2t
� 2

2x
Ds�f� 2f2x

� �
; �1b�

wheref is the solvent concentration,x the distance from the
polymer surface exposed to the solvent,t the time, and
Dg(f ) andDs(f ) are the diffusion coefficients in the glassy
and the swollen states. For simplicity, we will usef -inde-
pendentDg andDs in this paper.

In common with other phenomenological models [10,13–
16], we take as given the existence of a sharp, moving
boundary that separates the glassy core from the swollen
gel. We definex� l�t� to be the location of this boundary,
across which the concentration discontinuously changes
from f c (at x� l 1 01 on the glassy side) tofb (at x�
l 2 01 on the swollen side). Eq. (1a) thus refers to concen-
trationsf # fc; while Eq. (1b) applies to concentrations
f $ fc: The continuity equation across the boundary then
reads

Dg
2

2x
f�l�t�1 01

; t�2 Ds
2

2x
f�l�t�2 01

; t�

� �fb�t�2 fc� dl�t�dt
: �2�

To complete the specification of the problem, we require a
constitutive equation for the front velocity,v� dl=dt: This
can be derived by consideration of various physical mechan-
isms, including the kinetics of swelling [13,14] and the
plasticization-imposed constraint on the solvent flux across
the boundary [15,16].

According to the TW model, the steady-state front velo-
city in the Case II regime is determined as follows [7,8].
Ahead of the boundary moving with a constant velocityv0, a
steady Fickian precursor can be expressed asfg0�x; t� �
fc exp{2 v0�x 2 l�t��=Dg} ; with x $ l and dl=dt � v0:

The rate of change with time off at f�l 1 01
; t� � fc is

thus given by2f=2tufc
� fcv

2
0=Dg: Meanwhile, this2f=2tufc

is also the swelling rate determined by the osmotic pressure
that results from the difference between the local concentra-
tion f c and the local equilibrium concentrationfeq. This
equilibrium concentration is the saturated surface concen-
tration, and is approximately equal tofb if one assumes that
the concentration gradient behind the front is negligible in
the steady-state stage. TW then propose that2f=2tufc

�
P�fc;fb�=h�fc�; where P . V21kBT ln�fb=fc� is the
osmotic pressure atx� l 1 01 (V is the partial molecular
volume andT the temperature) andh is the viscosity asso-
ciated with polymer swelling. As a result, the velocity
expression is found to bev0 �

�����������
DgP=fch

p
:

In our model, we generalize the TW velocity expression
to the case of time-varyingv andfb, and then use it as the

T. Qian, P.L. Taylor / Polymer 41 (2000) 7159–71637160



constitutive equation forv ; dl=dt in Eq. (2). While
the swelling rate is again given by2f=2lufc

�
P�fc;fb�=h�fc�; the Fickian precursor, although still
governed by Eq. (1a), is now subject to the boundary condi-
tion Eq. (2) withv andfb varying with time. No longer is
either this precursor or2f=2tufc

determined by the instanta-
neousv(t). Nevertheless,2f=2tufc

remains always related to
2f=2xufc

by the relation2f=2tufc
� 2v2f=2xufc

: As a result,
the front velocity can be expressed as

v� 2
P�fc;fb�=h�fc�

2f=2xufc

: �3�

Becausev now depends onfb, f c, and2f=2xufc
simulta-

neously, a coupling is induced between the diffusion
processes in the glassy core and the swollen gel. By contrast,
we note that a constantv results in a Fickian precursor of the
constant shape given above asfg0(x,t) [15,16]. This leads to
cancellation in Eq. (2), which reduces to2Ds2f�l�t�2
01

; t��=2x� v0fb; and which serves as the boundary condi-
tion for Eq. (1a) only. By avoiding this assumption, we can
develop a more realistic model.

It is clear that the flux immediately behind the boundary,
2Ds2f�l�t�2 01

; t��=2x; cannot be kept equal tov0feq�0�;
a value that is required to maintainfb � feq�0� andv� v0;

unlessDs! ∞: In fact, with a finiteDs and an increasing
penetration depth

Rt
ti v�t� dt; the moving boundary has to

undergo a continuous drop infb to make 2f�l�t�2
01

; t��=2x large enough to sustain the propagation of the
front. This has been predicted in the models of AS [13],
AJ [14], and Rossi and coworkers [15,16]. Nevertheless,
in these three models the Fickian tail is either ignored�Dg �
0� [13], or included but not coupled with the front velocity
(v depends onfb andf c only) [14], or treated as a steady
state�v� const: andf�x . l; t� � fg0� [15,16]. Thus none
of these models fully considers the effect of glassy-core
diffusion on the front velocity.

3. Adiabatic limit

The initial stage of Case II diffusion involves some
complex swelling dynamics at the surface [4,17]. This
will not be discussed in the present paper. Instead, we
focus on how the diffusion proceeds after the surface
concentrationf (0,t) reaches the equilibrium valuefeq(0)
set by the external solvent activity. We assume that after an
appropriate exposure timeti, the Case II front is formed and
moves in accordance with Eqs. (1)–(3). We now seek some
simplification that will allow a rapid solution of these
equations.

This simplification is to be found by making use of the
fact that the diffusivity in the swollen gel is generally much
greater than in the glass, so thatDs q Dg: When this rela-
tion is taken to its extreme, so thatDs! ∞; we retrieve the
models in which the front velocityv is constant in time and
the Fickian tail in the glass has the form offg0(x,t). We do

not make this limiting assumption, but assume only thatDs

is sufficiently larger thanDg that the rate of change, dv=dt; of
the front velocity is small enough that the diffusion tail in
the glass has time to conform to the changing velocity, just
as if the front velocity were constant. We refer to this as the
adiabatic approximation.

We explore the range of validity of this approximation by
supposing that the solution is indeed in the form

fad�x; t� � fc exp 2
v�t�
Dg

x 2
Zt

ti
v�t� dt

� �( )
; �4�

with x $ l�t� � Rt
ti v�t� dt: Substitution into Eq. (1a) shows

thatfad(x,t) is a good solution, provided terms of the form

udv=dtu
Dg

�x 2 l�t�� exp 2
v�t�
Dg
�x 2 l�t��

( )
may be neglected in comparison with

v2�t�
Dg

exp 2
v�t�
Dg
�x 2 l�t��

( )
:

Since the exponential contribution infad is negligible
for x 2

Rt
ti v�t� dt . lg . Dg=v�t� (lg is the decay length

of Fickian tail), the above equation need hold only for 0#
x 2 t

Rt
ti v�t� dt # lg: The adiabatic condition is thus found

to be

udv=dtu=v p v2
=Dg; �5�

which means that the characteristic time associated with the
variation of the front velocity,v=udv=dtu; is much larger than
that associated with the establishment of a steady shape.
Now let us suppose that the advancing front experiences a
reduction offb fromfeq(0) tofeq�0�2 Dfb together with a
reduction ofv from v0 to v0=2 in the time duration fromt � ti
to t � ti 1 tv: Eq. (2) can be put in the approximate form of
DsDfb=v0tv . v0�feq�0�2 Dfb�: Assumingfeq(0) andDfb

are of the same order of magnitude, we thus obtain the
characteristic timev=udv=dtu . Ds=v

2
0: Combining this with

Eq. (5), we find the adiabatic criterion to beDs=Dg q 1; a
relation generally satisfied for polymeric materials [18].

With the help of Eq. (4), we can express the front velocity
in Eq. (3) as

v� DgP�fc;fb�
fch�fc�

� �1=2

�6�

by using the relation22fad=2xufc
� vfc=Dg: The validity of

the expression for the steady-state front velocityv0 in the
TW model is thus generalized to the case of retardation of
the front motion in the adiabatic limit. As a consequence,
the front velocity now depends only onfb (f c is treated as a
material constant). Meanwhile, Eq. (2) is reduced to
2Ds2f�l�t�2 01

; t��=2x� v�t�fb: While the diffusion in
the glassy core might seem to be decoupled from that in
the swollen gel with the help of the adiabatic approximation,
the effect of the Fickian precursor is in fact manifested in the
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new velocity expression (6). We note that the above adia-
batic approximation is also applicable to the AJ model, in
which the front velocity is assumed to depend only on a
time-varyingfb and constantf c.

We are now left with a simpler phenomenological model,
which consists of the diffusion equation (1a), the boundary
condition 2Ds2f�l�t�2 01

; t�2x� vfb; and the velocity
expression (6), together with the adiabatic Fickian precursor
fad in Eq. (4). It is worth noting that the adiabatic approx-
imation reduces the mathematical complexity to that of AS
[13], which simply putsDg � 0 and needs the solution of
Eq. (1a) only. Various conclusions obtained in Ref. [13] for
the gel are thus applicable to our model. For example, it was
shown there that fort ! ∞; fb 2 fc becomes vanishingly
small and the asymptotic behavior of the system is of Case I

type, with the solution forf in the swollen gel approaching
[19]

f�x; t� � fc 1 �feq�0�2 fc� 1 2
erf�x=2 �����

Dst
p �

erf�m�
� �

: �7�

Here the vanishing discontinuity is located atl�t� �
2m

�����
Dst
p

; where m is the solution of
��
p
p

mem2

erf�m� �
�feq�0�2 fc�=fc: The validity of solution (7) is independent
of the functional dependence ofv in Eq. (6) onfb as long as
v! 0 forfb ! fc: It is readily seen that for the asymptotic
front velocity dl=dt � m

�����
Ds=t
p

; the adiabatic condition (5)
becomesDs=Dg q 1 if �feq�0�2 fc� , fc and som , 1:
This is consistent with the adiabatic criterion derived for the
early stage of diffusion. However, the validity of the model
itself becomes suspect in this limit, as the distinction
between gel and glass is lost iffb 2 fc p fb:

4. Discussion and numerical results

A distinguishable Case II front motion requires that the
induction timeti for establishing the front be much smaller
than the time scaletv associated with the slowing-down of
front propagation. Denoting the initial constant velocity by
v0, we haveti , Dg=v

2
0 sincev2

0 is given byDg2f=2tufc
=fc

with 2f=2tufc
� P�fc;feq�0��=h�fc� being the characteristic

polymer-swelling rate at the surface [3,4]. The relationti ,
Dg=v

2
0 can also be deduced from the constant-flux boundary

condition at the solvent–polymer interfacex� 0 [16]. It is
now clear thatti p tv . Ds=v

2
0 requires the same condition

Ds q Dg as the adiabatic approximation.
The velocity expression in the present phenomenological

description is based on the TW model but involves a few
simplifications. No solvent concentration discontinuity is
predicted in the TW model, although a sharp decrease in
f does exist if there is a strong concentration dependence of
h . By treating the concentration gradient at the front as
infinite, the local equilibrium concentrationfeq at x� l 1
01 is then determined to bef�l 2 01

; t� � fb for the osmo-
tic pressureP(f c,feq). By further assuming that the effect of
osmotic pressure on the diffusion in the glassy core is insig-
nificant compared to that of the concentration gradient [18],
we found the Fickian precursor to be governed by Eq. (1a).
The velocity expression here is thus a result of equating
2f=2tufc

� P�fc;fb�=h�fc� from polymer swelling kinetics
tofcv

2
=Dg from solvent diffusion. The velocity dependence

on 2f=2tufc
; Dg, andh (f c) so obtained is regarded as the

most important prediction of the TW model and has been
experimentally verified in the steady-state stage [7–9].

To illustrate the effects of including the concepts
embodied in TW in the models of AS, AJ, and Rossi and
coworkers, we have performed some numerical calcula-
tions. In one set we used our model, in which the front
velocity varies with time, while in the other set the front
velocity was held constant following the prescription of
Rossi and coworkers. We choosev0, the initial velocity of

T. Qian, P.L. Taylor / Polymer 41 (2000) 7159–71637162

Fig. 1. Solvent concentrationf is shown as a function of position by
the solid lines for various times. The dashed lines show the dependence
on the front position of the concentrationfb of solvent at the swollen side of
the front. The concentration profiles are shown at times (given in units of
Ds=v

2
0) equal to 0, 0.2, 0.6, 0.8, 4.8, 8.8, 12.8, 16.8, and 20.8. (a) Present

model, showing continuous decrease offb with time. (b) Model of Refs.
[14,15], in whichfb becomes constant after the front has passed the point
x� 0:90Ds=v0:

Fig. 2. Front location plotted as a function of time. The solid line is the
result from the present model and the dashed line is that from the model of
Refs. [14,15]. The inset shows the detail fromt � 0 to t , Ds=v

2
0: An arrow

marks the point wherefb becomes equal tofc and after which dl=dt begins
to decrease.



penetration, as the velocity unit andDs=v0 as the length unit.
Accordingly, the time unit becomesDs=v

2
0: For the purpose

of comparison, we use the same initial concentration profile
f�x; t � 0� and the same initial front velocityv0 in the two
model calculations. We requiref�x; t � 0� to have a very
short penetration depthl0�l0 p Ds=v0�; to exhibit a Fickian
tail of the formfg0, and to satisfy the boundary condition
Eq. (2). The numerical values of the parameters used were
feq�0� � 0:2; fc � 0:1; and Dg=Ds � 0:01: Ideally, the
starting point of the calculation should havel0 be vanish-
ingly small. For practical reasons, it was necessary to start
with a finite value ofl0, and this was chosen to bel0 �
0:1Ds=v0: The results were found to be insensitive to this
initial choice. We also verified that different choices of the
initial shape of the Fickian tail result in nearly the same
evolution off (x,t) from t , ti as long as the initial tail
width is of the order of magnitude ofDg=v0: Figs. 1 and 2
show a comparison of the results of the present model with
those of the model used by Rossi and coworkers. Fig. 1
depicts a set off (x,t) curves for several selected values of
t. The dependence of front concentrationfb on front loca-
tion l is shown as a dashed line. In Fig. 1(a) (our model) the
front concentrationfb approachesfc � 0:1 in an asympto-
tic way while in Fig. 1(b) (Rossi’s model)fb becomes equal
tof c atl � 0:8983Ds=v0 and remains constant thereafter. It
is seen that compared with the model of Rossi and cowor-
kers, our model predicts a smoother decrease of the front
concentrationfb with increasingl , and consequently a
more gradual slowing of the advancing front. This is directly
seen in Fig. 2 which depicts the front location as a function
of time t. Although both models produce the typical Case I
behavior fort q Ds=v

2
0; a difference is noted for the initial

Case II stage and the later crossover to Case I behavior.
While the model of Rossi and coworkers predicts a constant
front velocity dl=dt � v0 for 0 # t # 0:7872Ds=v

2
0 and then

a decreasing dl=dt for t . 0:7872Ds=v
2
0; our model predicts

a continuous slowing of the advancing front fromt � 0; and
thus a smoother crossover from Case II to Case I behavior.

To conclude, we note that the approach presented here
may readily be generalized. Although we have made use of
the TW model to determine the front velocity, our phenom-
enological description can just as well be applied in
conjunction with any other microscopic model that takes
into account the coupling between the diffusion processes
in the swollen gel and the glassy core. The adiabatic
treatment employed here should then also be applicable.
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