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Abstract

The classic theory of Thomas and Windle has provided a powerful description of the processes involved in Case-Il diffusion, in which a
sharply defined front of solvent-swollen gel advances into a glassy polymer. We show how some aspects of the Thomas—Windle model can
be introduced into a recent formulation by Rossi and coworkers to provide a phenomenological description of the slowing of the advancing

front. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction swollen gel is infinite and that the front velocity is constant,
this model was not able to describe the slowing-down of the
The study of anomalous diffusion phenomena in poly- front motion and the crossover from Case Il to Case | beha-
meric materials has been of interest for decades. One parti-vior that is observed in a number of systems [11,12]. Astar-
cular instance of non-Fickian transport is Case Il diffusion ita and Sarti (AS) [13] introduced a kinetic expression for
[1], which is characterized by a sharp front moving into the the velocity of the glassy-swollen interface and treated the
polymer at a constant velocity. It has been intensively inves- diffusion in the swollen gel as governed by Fick’s law. The
tigated experimentally and theoretically, and various micro- crossover from Case Il to Case | behavior, as well as front
scopic and phenomenological models have been proposegropagation at constant velocity in the early stage of the
to explain the observed features of Case Il diffusion in diffusion, were predicted. However, this model did not
glassy polymers. Of microscopic models, that of Thomas take into account the diffusion of a small amount of solvent
and Windle (TW) [2,3] appears to be the most successful. in the glassy core and thus treated the transition from the
In this approach, the diffusion of solvent is accompanied by glassy to the swollen state as totally instantaneous. The
a swelling of the polymer that is driven by the osmotic neglect of the Fickian precursor ahead of the front does
pressure, and the front motion is controlled by the coupling not affect the prediction of the early linear kinetics and
between this osmotic-pressure-driven swelling and the the later crossover to Fickian behavior, but it does never-
nearly Fickian diffusion in the glassy region ahead of the theless leave the model at odds with the microscopic rate-
front. Detailed reviews of the TW model can be found in control mechanism as revealed in the TW model and veri-
Refs. [4—6]. The expression for the front velocity derived fied in a number of experimental observations. Astarita and
from this model has been quantitatively verified experimen- Joshi (AJ) [14] extended the AS model to allow for some
tally [7-9]. diffusion in the glassy core while keeping the kinetic expres-
Of the many phenomenological models, that of Peterlin sion for the front velocity unchanged. This was an improve-
[10] first considered Fickian diffusion into a glassy core menton the AS model, but still shed no light on the effect of
ahead of a sharp boundary that separates the swollen geblassy-core diffusion on the front velocity.
from the glassy core and which moves at constant velocity. More recently, Rossi and coworkers [15,16] have
Because it was assumed that the diffusion coefficient in the provided some new insight with a phenomenological
model that also incorporates diffusion into the glassy core.
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plasticization-imposed constraint was used for the solvent respectively given by
flux across the glassy-swollen interface. As a result, the o O T e
front velocity became independent of the solvent concentra- — = —| Dy()— |, (1a)
tion immediately behind the advancing front. This approx- oxL x|
imation is not consistent with the rate-control mechanismin gnq
the TW model and is not entirely in accord with the experi- ) )
mental observations [11,12]. Theoretically, lack of depen- ¢ _ 9 D ((l))% (1b)
dence of the velocity on solvent concentration decouples the dt ax[ = ax |
diffusion in the two distinct regions separated by a discon-
tinuity of the solvent concentration. The Fickian precursor is
determined only by the characteristic concentratiqrthat
distinguishes the glassy from the plasticized state, by the
diffusion coefficientDy in the glassy core, and by the
constant front velocityv,, but not by any property of
the plasticized region.
The purpose of this paper is to present a phenomen-
ological model that takes into account the diffusion in
both the glassy core and the swollen gel and that
includes the rate-controlled motion of the front separat-
ing these two regions. In particular, the rate-control
mechanism of the TW model is used to construct an
expression for the front velocity. This expression leads
to a coupling between the diffusion in the two distinct
regions. It is then shown that such a coupling can be
treated in the adiabatic approximation, by which we
mean the separation of the problem into two time scales
and the treatment of the rapid motion in a quasistatic dAC)
framework. The adiabatic criterion is found to be = [dp(t) — ] ——. 2
DgDg > 1, which requires the diffusion coefficierDs ot
in the swollen state to be much larger than that in the To complete the specification of the problem, we require a
glassy one. With the aid of our model we reach the constitutive equation for the front velocity,= dA/dt. This
following conclusions: (1) in the early stage, the bound- can be derived by consideration of various physical mechan-
ary separating the glassy core from the swollen gel isms, including the kinetics of swelling [13,14] and the
moves at a nearly constant velocity; (2) as the diffusion plasticization-imposed constraint on the solvent flux across
proceeds, the discontinuity in solvent concentration the boundary [15,16].
across the boundary decreases with time, as does the According to the TW model, the steady-state front velo-
front velocity; (3) although the front velocity decreases, city in the Case Il regime is determined as follows [7,8].
the shape of the Fickian tail ahead of the discontinuity Ahead of the boundary moving with a constant velowifya
can be determined, and the effect on the front velocity steady Fickian precursor can be expressedb@gx,t) =
of a slowly varying Fickian precursor can be explicitly ¢ exp{— Vo[x — A(D)]/Dg}, with x = A and dv/dt = v,.
obtained; and (4) the expression for the front velocity in The rate of change with time @ at ¢(A + 07,t) = ¢, is
the adiabatic limit appears as a simple generalization of thus given b)@¢/3t|¢c = ¢>cv%/Dg. Meanwhile, thisad>/6t|¢c
the TW expression for a constant front velocity. is also the swelling rate determined by the osmotic pressure
that results from the difference between the local concentra-
tion ¢ and the local equilibrium concentratiape, This

2. Model equilibrium concentration is the saturated surface concen-
tration, and is approximately equal dg if one assumes that

It has been experimentally observed that a critical solvent the concentration gradient behind the front is negligible in
concentration must be reached before a Case Il diffusionthe steady-state stage. TW then propose ﬂm‘t’)t|¢c =
front is formed [17]. Here we first introducé,, the char- P(éc, dp)/m(de), where P = 0 kgT In(¢dp/dp) is the
acteristic solvent concentration distinguishing the glassy osmotic pressure at= A + 0" (2 is the partial molecular
from the swollen state, as in Refs. [13—-16]. Thisis the volume andT the temperature) ang is the viscosity asso-
threshold concentration for swelling. So, in the swollen ciated with polymer swelling. As a result, the velocity
region, the solvent concentratiah is aboved,, while in expression is found to b&, = ,/DyP/¢cn.
the glassy regiong < ¢.. We then assume that the diffu- In our model, we generalize the TW velocity expression
sion equations in the glassy core and the swollen gel areto the case of time-varyingand ¢, and then use it as the

whereg is the solvent concentratiorthe distance from the
polymer surface exposed to the solventhe time, and
Dy(¢) andDy(¢) are the diffusion coefficients in the glassy
and the swollen states. For simplicity, we will ugeinde-
pendentDy and Ds in this paper.

In common with other phenomenological models [10,13—
16], we take as given the existence of a sharp, moving
boundary that separates the glassy core from the swollen
gel. We definex = A(t) to be the location of this boundary,
across which the concentration discontinuously changes
from ¢, (at x= A + 0" on the glassy side) te, (at x =
A — 0" on the swollen side). Eq. (1a) thus refers to concen-
trations ¢ = ¢, while Eqg. (1b) applies to concentrations
¢ = ¢.. The continuity equation across the boundary then
reads

0 0 b g — 0"
Dy &A1) +07.1) — Dy $(A) = 07,1
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constitutive equation forv=dA/dt in Eg. (2). While not make this limiting assumption, but assume only Dat
the swelling rate is again given bydg/oll, = is sufficiently larger thaiD that the rate of changeyit, of
P(de, dp)/m(de), the Fickian precursor, although still the front velocity is small enough that the diffusion tail in
governed by Eq. (1a), is now subject to the boundary condi- the glass has time to conform to the changing velocity, just
tion Eq. (2) withv and ¢, varying with time. No longer is  as if the front velocity were constant. We refer to this as the
either this precursor 03'¢/‘9t|¢c determined by the instanta- adiabatic approximation.
neousv(t). Neverthelessi¢/dt|, remains always related to We explore the range of validity of this approximation by
a¢/ax|¢c by the reIatiorB¢/at|¢c = —va¢/ax|¢,c. As aresult, supposing that the solution is indeed in the form
the front velocity can be expressed as V)

P(de, d)/m(bo) Pad2 0 = dc eXp{‘ o 1|
v=— T T 3 9

dPloX| g,
with x = A(t) = j{‘ v(7) dr. Substitution into Eq. (1a) shows

Becausev now depends omby, ¢, anddd/ox|, simulta-  that ¢.{xt) is a good solution, provided terms of the form
neously, a coupling is induced between the diffusion
processes in the glassy core and the swollen gel. By contrast,|dV/dt| [x — A(t)] expq — V(D [X — A(D)]
we note that a constamtesults in a Fickian precursor of the Dy Dy
constant shape given abovedag(x,t) [15,16]. This leads to

t

v(7) dT]}, 4

i

cancellation in Eq. (2), which reduces toDgdp(A(t) — may be neglected in comparison with
0", 1))/9x = Vo¢hp, and which serves as the boundary condi- VA1) v(t)
tion for Eq. (1a) only. By avoiding this assumption, we can —5— exp{— ?[X - /\(t)]}-

9 g

develop a more realistic model.
Itis clear that the flux immediately behind the boundary, Since the exponential contribution ith,g is negligible

—Dsd(A(t) — 07, 1))/ax, cannot be kept equal g ¢eq(0), for x — [{ V() dr > |§ = Dg/v(t) (I4 is the decay length

a value that is required to maintaf, = ¢eq(0) andv = vy, of Fickian tail), the above equation need hold only fo=0

unlessDs — co. In fact, with a finiteDs and an increasing  x —t [{ v(r) dr =< |,. The adiabatic condition is thus found

penetration deptrf{i v(7) d7, the moving boundary has to  to be

undergo a continuous drop i, to make dp(A(t) —

0", 1))/ox large enough to sustain the propagation of the |dv/dtj/v < Vz/Dg’ ®)

front. This has been predicted in the models of AS [13],

AJ [14], and Rossi and coworkers [15,16]. Nevertheless, \; iation of the front velocityy/|dv/dt], is much larger than

in these thfee models the Fickian tall i‘?‘ either ignq@g:. that associated with the establishment of a steady shape.
0) [13], or included but not coupled with the front velocity Now let us suppose that the advancing front experiences a

(v depends onpy, and ¢ only) [14], or treated as a steady reduction of, f _ :
. a b from ¢¢0) t0 pey(0) — Ay, together with a
state(v = const andé(x > A, 1) = ggo) [15,16]. Thus none reduction ofv from vy to vy/2 in the time duration from = t;

of these models fully considers the effect of glassy-core tot =t +t,. Eq. (2) can be put in the approximate form of

which means that the characteristic time associated with the

diffusion on the front velocity. DeA /oty = Vo(dheq(0) — Adhy). ASSUMINGhe0) andAd,
are of the same order of magnitude, we thus obtain the
3 Adiabatic limit characteristic timev/|dv/dt| = Dg/V3. Combining this with

Eg. (5), we find the adiabatic criterion to Be/Dy > 1, a

The initial stage of Case Il diffusion involves some relation generally satisfied for polymeric materials [18]. _
complex swelling dynamics at the surface [4,17]. This _ With the help of Eq. (4), we can express the front velocity
will not be discussed in the present paper. Instead, wein Ed. (3) as
focus on how the diffusion proceeds after the surface DgP(dc, ) 2
concentrationg(0,t) reaches the equilibrium valug.(0) V= [¢—(<b)]
set by the external solvent activity. We assume that after an R Pe
appropriate exposure timgthe Case Il frontis formed and by using the relation- 6d>ad/6x|¢c = V¢/Dy. The validity of
moves in accordance with Egs. (1)—(3). We now seek somethe expression for the steady-state front veloejgyn the
simplification that will allow a rapid solution of these TW model is thus generalized to the case of retardation of
equations. the front motion in the adiabatic limit. As a consequence,

This simplification is to be found by making use of the the front velocity now depends only @, (¢, is treated as a
fact that the diffusivity in the swollen gel is generally much material constant). Meanwhile, Eq. (2) is reduced to
greater than in the glass, so thag > Dy. When this rela- —DgdP(A(t) — 0, 1))/ox = W(t)¢,. While the diffusion in
tion is taken to its extreme, so that — oo, we retrieve the the glassy core might seem to be decoupled from that in
models in which the front velocity is constant in time and  the swollen gel with the help of the adiabatic approximation,
the Fickian tail in the glass has the form¢fy(x.t). We do the effect of the Fickian precursor is in fact manifested in the

(6)
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0.20 type, with the solution fogp in the swollen gel approaching
0.15 | [19]
< 0.10
erf(x/2./Dgb)
005 | B = b + 1660 — g 1= SENED ] @)

0.00
0.

Here the vanishing discontinuity is located att) =
2m/D¢t, where m is the solution of\/—wmemz erf(m) =
[eq(0) — ¢cl/bc. The validity of solution (7) is independent
of the functional dependencewin Eq. (6) on¢y, as long as
v— 0 for ¢, — ¢. Itis readily seen that for the asymptotic
front velocity dv/dt = my/D4/t, the adiabatic condition (5)
becomesDy/Dy > 1 if [¢eq(0) — dc] ~ ¢ and som ~ 1.
This is consistent with the adiabatic criterion derived for the
Fig. 1. Solvent concentratiog is shown as a function of position by ~ €arly stage of diffusion. However, the validity of the model
the solid lines for various times. The dashed lines show the dependenceitself becomes suspect in this limit, as the distinction

on the front position of the concentratign of solvent at the swollen side of between gel and glass is lostdf, — ¢. < ¢p.
the front. The concentration profiles are shown at times (given in units of
Dy/V) equal to 0, 0.2, 0.6, 0.8, 4.8, 8.8, 12.8, 16.8, and 20.8. (a) Present
model, showing continuous decreasedgfwith time. (b) Model of Refs.
[14,15], in which¢, becomes constant after the front has passed the point
X = 0.90D¢/Vp.

0.20

0.15 H (b) 1

S 010H || N7~ = 1
0.05 1
0.00 : !

0.0 1.0 2.0 3.0 4.0 5.0 6.0
x/(D,/v,)

4. Discussion and numerical results

A distinguishable Case Il front motion requires that the
induction timet; for establishing the front be much smaller
new velocity expression (6). We note that the above adia- than the time scalg associated with the slowing-down of
batic approximation is also applicable to the AJ model, in front propagation. Denoting the initial constant velocity by
which the front velocity is assumed to depend only on a vy, we havet; ~ Dg/vé since\3 is given by Dgdd/at|y, /e
time-varying¢, and constant.. with 9 ¢/at] b = P(de, de(0))/ () being the characteristic
We are now left with a simpler phenomenological model, polymer-swelling rate at the surface [3,4]. The relatior
which consists of the diffusion equation (1a), the boundary Dg/v(z) can also be deduced from the constant-flux boundary
condition —Dgad(A(t) — 07, t)ax = vy, and the velocity condition at the solvent—polymer interfage= 0 [16]. It is
expression (6), together with the adiabatic Fickian precursor now clear that; < t, = DJ/\V3 requires the same condition
¢adin EQ. (4). It is worth noting that the adiabatic approx- D > Dy as the adiabatic approximation.
imation reduces the mathematical complexity to that of AS  The velocity expression in the present phenomenological
[13], which simply putsDy = 0 and needs the solution of  description is based on the TW model but involves a few
Eqg. (1a) only. Various conclusions obtained in Ref. [13] for simplifications. No solvent concentration discontinuity is
the gel are thus applicable to our model. For example, it was predicted in the TW model, although a sharp decrease in
shown there that for— oo, ¢, — ¢, becomes vanishingly ¢ does exist if there is a strong concentration dependence of
small and the asymptotic behavior of the system is of Case | . By treating the concentration gradient at the front as
infinite, the local equilibrium concentratiofieqatx = A +

6.0 . - ; 0" is then determined to bg(A — 0", t) = ¢, for the osmo-
_-=3 tic pressurd®(¢c, deg). By further assuming that the effect of
50T ,,/" i osmotic pressure on the diffusion in the glassy core is insig-
~ 40t = - ] nificant compared to that of the concentration gradient [18],
Qb ’ = we found the Fickian precursor to be governed by Eq. (1a).
w30 | 7% The velocity expression here is thus a result of equating
S/ Y dPlat] = P(de, dp)/m(c) from polymer swelling kinetics
<20 7 to d)Cvg/Dg from solvent diffusion. The velocity dependence
1/ on a¢/at|¢c, Dy, andn(¢.) so obtained is regarded as the
1.0 1% 00 Lot n most important prediction of the TW model and has been
0.0 , , 00 05 1.0 15 experimentally verified in the steady-state stage [7-9].
0.0 5.0 10.0 15.0 20.0 To illustrate the effects of including the concepts
t/(Ds /Voz) embodied in TW in the models of AS, AJ, and Rossi and

coworkers, we have performed some numerical calcula-
Fig. 2. Front location plotted as a function of time. The solid line is the tions. In one set we used our model. in which the front
result from the present model and the dashed line is that from the model of . . . . L !
Refs. [14,15]. The inset shows the detail from 0 tot ~ Dg/V3. An arrow velocity varies with time, while in the other set the_ front
velocity was held constant following the prescription of

marks the point wherg, becomes equal t¢. and after which d/dt begins
to decrease. Rossi and coworkers. We choogg the initial velocity of
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penetration, as the velocity unit abd/v; as the length unit. To conclude, we note that the approach presented here
Accordingly, the time unit becomd3/\Z. For the purpose  may readily be generalized. Although we have made use of
of comparison, we use the same initial concentration profile the TW model to determine the front velocity, our phenom-
¢(x,t = 0) and the same initial front velocity, in the two enological description can just as well be applied in
model calculations. We requir¢(x,t = 0) to have a very  conjunction with any other microscopic model that takes
short penetration depthy(Ay < Dg/Vp), to exhibit a Fickian into account the coupling between the diffusion processes
tail of the form ¢ 4o, and to satisfy the boundary condition in the swollen gel and the glassy core. The adiabatic
Eqg. (2). The numerical values of the parameters used weretreatment employed here should then also be applicable.
$eq(0) = 0.2, ¢, =0.1, and Dy/Ds = 0.01 Ideally, the

starting point of the calculation should haxg be vanish-

ingly small. For practical reasons, it was necessary to startAcknowledgements

with a finite value ofA,, and this was chosen to bg = } .
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show a comparison of the results of the present model with

those of the model used by Rossi and coworkers. Fig. 1
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